Practical Salt Tectonics

Discipline: Salt Tectonics, Structural Geology, Petroleum Systems

Length: 4 days

Instructor

Mark received a B.S. in biology from the California Institute of Technology in 1976, an M.S. in geology from the University of California, Berkeley, in 1982, and a Ph.D. in structural geology from the University of Colorado at Boulder in 1991. He worked for Sohio Petroleum Co. (1982 to 1985), Geo-Logic Systems (1985-1989), and Alastair Beach Associates in Glasgow, Scotland (1989-1992). He then returned to the University of Colorado as a Research Assistant Professor before founding his own company in 1998, where he consults and teaches for the petroleum industry worldwide and conducts research sponsored by industry. Although Mark’s background includes many types of tectonic environments, his primary research and consulting interests are focused on the styles and kinematics of salt tectonics, the processes of salt-sediment interaction, the architecture and evolution of passive margins, and the applications to petroleum exploration. He is the author or coauthor of over 80 papers and 170 abstracts, is the regular instructor for AAPG’s Salt Tectonics school, and has been an AAPG Distinguished Lecturer and an AAPG International Distinguished Instructor. He has authored a number of patents. She is fluent in English, German, and Spanish, and proficient in French and Italian.

Mark G. Rowan, PhD

COURSE DESCRIPTION

This is a comprehensive course covering all aspects of global salt tectonics. The content ranges from the mechanics of salt-dominated deformation to the influence of salt on the petroleum systems, with surface and subsurface examples from all major salt basins. Lecture material is supplemented with seismic-based exercises.

LEARNING OUTCOMES

After this course participants will be able to:
- appreciate the influence of basement tectonics on salt distribution
- interpret intrasalt geometries on seismic data
- describe the mechanics of salt flow
- demonstrate how differential loading, extension, and contraction drive salt flow
- explain salt’s role in rift basins, passive margins, and convergent margins
- understand diapir rise and minibasin subsidence
- predict geometries and salt-sediment interaction in diapir-flank traps
- show how and why allochthonous salt is emplaced and subsequently evolves
- interpret seismic data while avoiding associated pitfalls due to complex salt bodies
- appraise the influence of salt on trap, reservoir, hydrocarbons, and seal

COURSE CONTENT

1. Salt basins
 1.1. Layered evaporite sequences
 1.2. Tectonic settings of salt basins

2. Fundamentals of salt tectonics
 2.1. Mechanics
 2.2. Gravitational failure
 2.3. Definitions

3. Extensional salt tectonics
 3.1. Thin-skinned extension
 3.2. Diapir initiation and reactivation
 3.3. Thick-skinned extension

4. Contractional salt tectonics
 4.1. Thin-skinned contraction
 4.2. Diapir initiation and reactivation
 4.3. Thick-skinned contraction

5. Strike-slip salt tectonics

6. Vertical salt tectonics
 6.1. Salt-evacuation structures and minibasins
 6.2. Passive diapirism
 6.3. Near-diapir deformation
 6.4. Dissolution

7. Allochthonous salt tectonics
 7.1. Initiation and advance
 7.2. Styles and evolution of salt sheets and canopies

8. Salt and petroleum systems
 8.1. Trap
 8.2. Reservoir distribution and facies
 8.3. Hydrocarbon maturation and migration
 8.4. Seal